Home About Us Media Kit Subscriptions Links Forum
 
APPEARED IN


View All Articles

Download PDF

FAMOUS INTERVIEWS

Directories:

SCHOLARSHIPS & GRANTS

HELP WANTED

Tutors

Workshops

Events

Sections:

Books

Camps & Sports

Careers

Children’s Corner

Collected Features

Colleges

Cover Stories

Distance Learning

Editorials

Famous Interviews

Homeschooling

Medical Update

Metro Beat

Movies & Theater

Museums

Music, Art & Dance

Special Education

Spotlight On Schools

Teachers of the Month

Technology

Archives:

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

1995-2000


OCTOBER 2008

Avoiding Spleen Removal for Cooley’s Anemia Sufferers

Researchers from Weill Cornell Medical College may have discovered the precise role of a gene in one of the world's most common blood disorders, beta-thalassemia, commonly known as Cooley's anemia. Along with sickle-cell anemia, Cooley's anemia is the most commonly inherited disease in the world, affecting many people of Mediterranean descent, and 20 out of every 100,000 African-Americans. The World Health Organization estimates that between 50,000-100,000 children are born with the disease each year.

The research is published in a recent issue of the journal Blood, the official publication of the American Society of Hematology (ASH).

In Cooley's anemia, hemoglobin—the oxygen-carrying molecule on red blood cells—is mutated and non-functioning, resulting in a low red-blood-cell count. Common symptoms of the disease include fatigue, shortness of breath and an enlarged spleen, called splenomegaly, caused by a buildup of malformed red blood cells within the body. The spleen works to filter out these unhealthy cells in order to protect the body from harm, such as in a stroke, but eventually the spleen becomes over-stuffed and is commonly surgically removed (splenectomy) in order to prevent a potentially fatal burst. Unfortunately, after the spleen is removed, patients are at a much greater risk for stroke and infections.

Dr. Stefano Rivella, the study's senior author and assistant professor of genetic medicine in pediatrics at Weill Cornell Medical College, believes that he and his collaborators may have found a way around splenectomy. After giving mice with Cooley's a compound called JAK2 inhibitor, the researchers found that the mice's spleens shrunk to normal sizes, and they began to produce normal red blood cells. The chemical (a similar compound is already in a Phase I clinical trial for myelodysplastic syndromes—another blood disorder) blocks the activity of the JAK2 gene that is highly expressed in Cooley's anemia, and is believed to play a crucial role in the malformation of red blood cells.#

COMMENT ON THIS ARTICLE

Name:

Email:
Show email
City:
State:

 


 

 

 

Education Update, Inc.
All material is copyrighted and may not be printed without express consent of the publisher. © 2008.